数学教学工作计划

时间:2023-10-29 04:53:16
数学教学工作计划(集锦15篇)

数学教学工作计划(集锦15篇)

日子如同白驹过隙,不经意间,我们的工作又进入新的阶段,为了在工作中有更好的成长,该好好计划一下接下来的工作了!那么计划怎么拟定才能发挥它最大的作用呢?以下是小编收集整理的数学教学工作计划,仅供参考,希望能够帮助到大家。

数学教学工作计划1

我校选用的数学教材是由人民教育出版社、课程教材研究所、中学数学课程教材研究开发中心编著的a版教材。与旧教材作一比较,发现本套教材是在继承我国高中数学教科书编写优良传统和基础上积极创新,充分体现了数学的美学价值和人文精神。

一、教材分析

本教材有下列几个特点:

1、更加注重强调数学知识的实际背景和应用,使教材具有很强的"亲和力",即以生动活泼的呈现方式,激发学生的兴趣和美感,使学生产生对数学的亲切感,引发学生"看个究竟"的冲动,使学生兴趣盎然地投入学习。

2、以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神,体现了问题性,本套教材的一个很大特点是每一章都可以看到"观察""思考""探索"以及用"问号性"图标呈现的"边空"等栏目,利用这些栏目,在知识形过过程的"关键点"上,在运用数学思想方法产生解决问题策略的"关节点"上,在数学知识之间联系的"联点"上,在数学问题变式的"发散点"上,在学生思维的"最近发展区"内,提出恰当的、对学生数学思维有适度启发的问题,以引导学生的数学探究活动,切实转变学生的学习方式。

3、信息技术是一种强有力的认识工具,在教材的编写过程体现了积极探索数学课程与信息技术的整合,帮助学生利用信息技术的力量,对数学的本质作进一步的理解。

4、关注学生数学发展的不同需求,为不同学生提供不同的发展空间,促进学生个性和潜能的发展提供了很好的平台。例如教材通过设置"观察与猜想"、"阅读与思考"、"探究与发现"等栏目,一方面为学生提供了一些关于探究性、拓展性、思想性、时代性和应用性的选学材料,拓展学生的数学活动空间和扩大学生的数学知识面,另一方面也体现了数学的科学价值,反映了数学在推动其他科学和整个文化进步中的作用。

5、新教材注重数学史渗透,特别是注重介绍我国对数学的贡献,充分体现数学的人文价值,科学价值和文化价值,激发了学生的爱国主义情感和民族自豪感。

二、教学任务与目的

1、了解集合的含义与表示,理解集合间的关系和运算,感受集合语言的意义和作用。进一步体会函数是描述变量之间的依赖关系的重要数学模型,会用集合与对应的语言描述函数,体会对应关系在刻画函数概念中的作用。了解函数的构成要素,会求简单函数定义域和值域,会根据实际情境的不同需要选择恰当的方法表示函数。通过已学过的具体函数,理解函数的单调性、(小)值及其几何意义,了解奇偶性的含义,会用函数图象理解和研究函数的性质。根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼兹、欧拉等)的有关资料,了解函数概念的发展历程。

2、了解指数函数模型的实际背景。理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型。理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对简化运算的作用。通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点。知道指数函数y=ax与对数函数y=logax互为反函数(a0,a≠1)。通过实例,了解幂函数的概念;合函数y=x,y=x2,y=x3,y=1/x,y=x1/2的图象,了解它们的变化情况。

3、合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。利用计算工具,比较指数函数、对数函数以及幂函数间的增长差异;合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。收集一些社会生活中普遍使用的函数模型,了解函数模型的广泛应用。

4、利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的构特征,并能运用这些特征描述现实生活中简单物体的构。能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如纸纸板)制作模型,会用斜二侧法画出它们的直观图。通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不同表示形式。完成实习作业,如画出某些建筑的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)。了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。

5、以长方体为载体,使学生在直观感知的基础上,认识空间中点、直线、平面之间的位置关系。通过对大量图形的观察、实验、操作和说理,使学生进一步了解平行、垂直判定方法以及基本性质。学会准确地使用数学语言表述几何对象的位置关系,体验公理化思想,培养逻辑思维能力,并用来解决一些简单的推理论证及应用问题。

6、在平面直角坐标系中,合具体图形,探索确定直线位置的几何要素。理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式。能根据斜率判定两条直线平行或垂直。根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系。能用解方程组的方法求两直线的交点坐标。探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。

三、教学措施和活动

1、加强集体备课与个人学习,个人要加强自我学习和养成解数学题的习惯,提高个人专业素养和教学基本功。

2、注重培养学生自主学习的能力,转变学生学习数学的方式。学生是学习和发展的主人,教学中要体现学生的主体地位,增强学生的自我学习,自我教育与发展的意识和能力。改善学生的学习方式是高中数学新课程追求的基本理念。

3、了解新课程教学基本程序,掌握新课程教学常规策略,立足于提高课堂教学效率。

4、与学生多沟通、多交流,真正成为学生的良师益友。

5、要深刻理解领悟新教材的立意进行教学,而不要盲目地加深难度。

数学教学工作计划2

一、教学思想:

教育学生掌握基础知识与基 ……此处隐藏22679个字……p>第三章统计

1、随机抽样、能从现实生活或其他学科中提出具有一定价值的统计问题。结合具体的实际问题情境,理解随机抽样的必要性和重要性。在参与解决统计问题的过程中,学会用简单随机抽样方法从总体中抽取样本;通过对实例的分析,了解分层抽样和系统抽样方法。

2、用样本估计总体。通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布表、画频率分布直方图、频率折线图、茎叶图(参见例1),体会他们各自的特点。通过实例理解样本数据标准差的意义和作用,学会计算数据标准差。在解决统计问题的过程中,进一步体会用样本估计总体的思想,会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征;初步体会样本频率分布和数字特征的随机性。形成对数据处理过程进行初步评价的意识。

3、变量的相关性。通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系。经历用不同估算方法描述两个变量线性相关的过程。知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程。

选修2-3,主要涉及三章内容:

第一章计数原理

计数问题是数学中的重要研究对象之一,分类加法计数原理、分步乘法计数原理是解决计数问题的最基本、最重要的方法,也称为基本计数原理,它们为解决很多实际问题提供了思想和工具。是学习排列、组合和概率理论的基础,也是培养学生数学思维能力的良好素材。

1、重视基本概念教学,正确区分分类与分步,通过具体问题情境和实际事例,让学生不断感悟和总结两个基本计数原理,并能应用两个原理解决问题,分类要做到不重不漏,分步要做到步骤完整。

2、在分析排列、组合应用题时,应充分利用列举法和树形图进行分析,让学生从直观,感性上理解问题,辨别排列与组合问题,总结规律,探究快捷解决问题的途径。

3、通过实例,总结分类加法计数原理、分步乘法计数原理;能根据具体问题的特征,选择分类加法计数原理或分步乘法计数原理,解决一些简单的实际问题。的含义。

第二章随机变量及其分布列

学生将在必修课程学习概率的基础上,学习某些离散型随机变量分布列及其均值、方差及内容,初步学会利用离散型随机变量思想描述和分析某些随机现象的方法,并能用所学知识解决一些简单的实际问题,进一步体会概率模型的作用及运用概率思考问题的特点,初步形成用随机观念,观察、分析问题的意识。

1、随机观念贯穿于这部分内容的始终。首先要认识离散型随机变量的分布列对刻划随机现象的重要性;其次掌握超几何分布、二项分布是两个非常重要的应用广泛的概率模型。

2、通过实例,理解所有的概念,避免过分注重形式化的倾向。教学中不应简单从抽象的定义出发,机械地模仿,得出概念。重点是理解离散型随机变量及其分布列、均值、方差、正态分布的概念。

第三章统计案例

学生将在必修课程学习统计的基础上,通过对典型案例的讨论,了解和使用一些常用的统计方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用。

1、教学中应该通过生活中详实事例理解回归分析的方法,其步骤为通过散点图,直观地了解两个变量的关系,然后,通过最小二乘法建立回归模型,最后通过分析残差,相关指数等,评价模型的好坏。

2、教学中应用实例分析总结得出独立性检验的意义,并且认真体会独立性检验的基本思路,类似于反证法,会用类比的思想方法得出独立性检验的基本步骤。

3、回归分析注重步骤和过程,鼓励学生经历数据处理的全过程,要尽量使用统计图直观展示两个变量的关系,培养学生对数据的直观感觉,有条件的学校要利用统计软件画散点图、进而直观判断它们是否线性相关,然后在线性相关前提下尝试用线性回归模型来拟合,最后还通过相关指数和残差分析来判断拟合效果。

选修4-5,主要涉及一章内容:

第一章不等式

在本专题教学中,教师应引导学生了解重要的不等式都有深刻的数学意义和背景,例如本专题给出的不等式大都有明确的几何背景。学生在学习中应该把握这些几何背景,理解这些不等式的实质。主要考察绝对值不等式的解法,这也是我们讲课的重点。本专题特别强调不等式及其证明的几何意义与背景,以加深学生对这些不等式的数学本质的理解,提高学生的逻辑思维能力和分析解决问题的能力。

1.回顾和复习不等式的基本性质和基本不等式。

2.理解绝对值的几何意义,并能利用绝对值不等式的几何意义证明以下不等式:

(1);

(2);

(3)会利用绝对值的几何意义求解以下类型的不等式:

三、教学任务

高二下学期的授课内容为必修3和选修2-3及选修4-5,必修3和选修2-3的前两章在期中考试前完成(约在5月1日前完成);选修2-3第三章及选修4-5在期末考试前完成(约在7月10日前完成)。

四、教学目标

提高数学设计探究性课堂教学设计的能力。建立一个充满生命活力的、开放的课堂教学运行机制,使教学设计真正适合学生发展的需要。建立中学数学探究性课堂教学设计的多元化评价机制。提高教师对探究性数学教学设计的评价能力掌握科学的评价方法,推动中学数学探究性课堂教学向前发展。

五、教法分析:

告知教学目标,讲述;板书或由问题引入等引起注意,激发兴趣。复习旧知识,提问;小测验等激活原有知识。呈现新知识,设计先行组织者、图表;教师讲授;指导学生自学;提供直观教材等选择性知觉新信息。

六、学情分析:

1、学习兴趣与基础

经过一段时间的观察和调查,我发现班上有一半学生对数学学习没有兴趣,问其原因,大部分都说数学太难,学不懂,老师讲的都不明白,基础太弱,导致课堂上无所事事。这样越来越对数学没有兴趣。

2、学习习惯

少部分学生有主动学习的行为,比较喜欢上数学课,学习热情也很高,和老师讲常交流。但仍有大部分学生学习懒散、学习习惯差,粗心大意、书写不认真,不愿思考问题,上课开小差,依赖老师讲解,

依赖同学的帮助,作业抄袭等等不良现象。

七、教学措施

1、加强基础知识教学。了解到学生目前的学习情况,大部分学生对初中的相关知识掌握不好,利用自习课或课余时间为他们补充初中知识的盲点,加强基础知识。同时在上课的时候,以基础简单题目为主,争取让大部分学生在课堂上有所收获。

2、加强合作学习。对于班级出现的两极分化情况,发动成绩好的学生带动基础薄弱的学生,促使大家共同进步。

八、教学进度安排

高二下学期

算法初步(必修3)9课时

概率(必修3)10课时

统计(必修3)8课时

计数原理(选修2-3)10课时

随机变量及其分布(选修2-3)15课时

统计案例(选修2-3)3课时

不等式(选修4-5)5课时

《数学教学工作计划(集锦15篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式